Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microbiol Methods ; 213: 106813, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37647945

RESUMO

Antimicrobial resistance disseminates throughout bacterial populations via horizontal gene transfer, driven mainly by mobile genetic elements (MGEs). Entrapment vectors are key tools in determining MGE movement within a bacterial cell between different replicons or between sites within the same replicon. The pBACpAK entrapment vector has been previously used to study intracellular transfer in Gram-negative bacteria however since pBACpAK contains a chloramphenicol resistance gene, it cannot be used in bacterial isolates which are already resistant to chloramphenicol. Therefore, we developed new derivatives of the pBACpAK entrapment vector to determine intracellular transfer of MGEs in an Escherichia coli DH5α transconjugant containing the chloramphenicol resistance plasmid pD25466. The catA1 of pBACpAK was replaced by both mcr-1 in pBACpAK-COL and aph(3')-Ia in pBACpAK-KAN, allowing it to be used in chloramphenicol resistant strains. The plasmid constructs were verified and then used to transform the E. coli DH5α/pD25466 transconjugants in order to detect intracellular movement of the MGEs associated with the pD25466 plasmid. Here we report on the validation of the expanded suite of pBACpAK vectors which can be used to study the intracellular transfer of MGEs between, and within, replicons in bacteria with different antimicrobial resistance profiles.


Assuntos
Cloranfenicol , Escherichia coli , Cloranfenicol/farmacologia , Antibacterianos/farmacologia , Plasmídeos/genética , Sequências Repetitivas Dispersas , Farmacorresistência Bacteriana/genética , Testes de Sensibilidade Microbiana
2.
Methods Mol Biol ; 2555: 51-72, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36306078

RESUMO

Antimicrobial resistance (AMR) is an increasingly important global challenge for healthcare systems as well as agricultural food production systems. Our ability to prepare for, and respond to, emerging AMR threats is dependent on our knowledge of genes able to confer AMR that are circulating within various environmental, animal, and human microbiomes. Targeted, sequence-specific, detection of AMR genes and functional resistance assays, described here, carried out on metagenomic DNA gives us unique insights into the presence of AMR genes and how these are associated with mobile genetic elements that may be responsible for their dissemination and can also provide important information about the mechanisms of resistance underpinning the phenotype.


Assuntos
Antibacterianos , Anti-Infecciosos , Animais , Humanos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Metagenômica , Anti-Infecciosos/farmacologia , DNA
3.
Microbiol Spectr ; 11(1): e0327822, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36511714

RESUMO

Mobile colistin resistance (mcr) genes are often located on conjugative plasmids, where their association with insertion sequences enables intercellular and intracellular dissemination throughout bacterial replicons and populations. Multiple mcr genes have been discovered in every habitable continent, in many bacterial species, on both plasmids and integrated into the chromosome. Previously, we showed the intercellular transfer of mcr-1 on an IncI1 plasmid, pMCR-E2899, between strains of Escherichia coli. Characterizing the intracellular dynamics of mcr-1 transposition and recombination would further our understanding of how these important genes move through bacterial populations and whether interventions can be put in place to stop their spread. In this study, we aimed to characterize transfer events from the mcr-1-containing transposon Tn7511 (ISApl1-mcr-1-pap2-ISApl1), located on plasmid pMCR-E2899, using the pBACpAK entrapment vector. Following the transformation of pBACpAK into our DH5α-Azir/pMCR-E2899 transconjugant, we captured ISApl1 in pBACpAK multiple times and, for the first time, observed the ISApl1-mediated transfer of the mcr-1 transposon (Tn7511) into the chromosome of E. coli DH5α. Whole-genome sequencing allowed us to determine consensus insertion sites of ISApl1 and Tn7511 in this strain, and comparison of these sites allowed us to explain the transposition events observed. These observations reveal the consequences of ISApl1 transposition within and between multiple replicons of the same cell and show mcr-1 transposition within the cell as part of the novel transposon Tn7511. IMPORTANCE By analyzing the intracellular transfer of clinically relevant transposons, we can understand the dissemination and evolution of drug resistance conferring mobile genetic elements (MGEs) once a plasmid enters a cell following conjugation. This knowledge will help further our understanding of how these important genes move through bacterial populations. Utilizing the pBACpAK entrapment vector has allowed us to determine the mobility of the novel mcr-1-containing transposon Tn7511.


Assuntos
Colistina , Proteínas de Escherichia coli , Colistina/farmacologia , Antibacterianos/farmacologia , Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Plasmídeos/genética , Elementos de DNA Transponíveis , Proteínas de Escherichia coli/genética , Bactérias/genética , Testes de Sensibilidade Microbiana
4.
BMC Oral Health ; 22(1): 210, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624467

RESUMO

The human oral cavity is one of the hotspots harboring multiple mobile genetic elements (MGEs), which are segments of DNA that can move either within bacterial genomes or between bacterial cells that can facilitate the spreading of genetic materials, including antimicrobial resistance genes. It is, therefore, important to investigate genes associated with the MGEs as they have a high probability of dissemination within the bacterial population under selective pressure from human activities. As one-third of oral bacteria are not yet culturable in the laboratory condition, therefore, in this work, it is aimed to detect and identify the genetic contexts of MGEs in the oral cavity through an inverse PCR (IPCR)-based approach on the oral metagenomic. The human oral metagenome was extracted from saliva samples collected from healthy individuals in Tromsø, Norway. The extracted DNA was partially digested with the HindIII restriction enzyme and self-circularized by ligation. DNA primers targeting each MGE were designed to amplify outwards from the MGEs and used for the IPCR on the circularized DNA products. The IPCR amplicons were cloned into a pCR-XL-2-TOP vector, screened, and sequenced. Out of 40 IPCR amplicons, we confirmed and verified the genetic contexts of 11 samples amplified with primers targeting integron gene cassettes (GCs), IS431 composite transposons, and Tn916 conjugative transposons (tet(M) and xis-int). Novel integron GCs, MGEs, and variants of Tn916 conjugative transposons were identified, which is the first report using the IPCR technique to detect the genetic contexts of MGEs in the oral metagenomic DNA.


Assuntos
Genoma Bacteriano , Metagenoma , Humanos , Sequências Repetitivas Dispersas/genética , Metagenoma/genética , Boca , Reação em Cadeia da Polimerase
5.
Microbiol Spectr ; 10(1): e0214021, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35044219

RESUMO

Mobile genetic elements (MGEs) are often associated with antimicrobial resistance genes (ARGs). They are responsible for intracellular transposition between different replicons and intercellular conjugation and are therefore important agents of ARG dissemination. Detection and characterization of functional MGEs, especially in clinical isolates, would increase our understanding of the underlying pathways of transposition and recombination and allow us to determine interventional strategies to interrupt this process. Entrapment vectors can be used to capture active MGEs, as they contain a positive selection genetic system conferring a selectable phenotype upon the insertion of an MGE within certain regions of that system. Previously, we developed the pBACpAK entrapment vector that results in a tetracycline-resistant phenotype when MGEs translocate and disrupt the cI repressor gene. We have previously used pBACpAK to capture MGEs in clinical Escherichia coli isolates following transformation with pBACpAK. In this study, we aimed to extend the utilization of pBACpAK to other bacterial taxa. We utilized an MGE-free recipient E. coli strain containing pBACpAK to capture MGEs on conjugative, ARG-containing plasmids following conjugation from clinical Enterobacteriaceae donors. Following the conjugative transfer of multiple conjugative plasmids and screening for tetracycline resistance in these transconjugants, we captured several insertion sequence (IS) elements and novel transposons (Tn7350 and Tn7351) and detected the de novo formation of novel putative composite transposons where the pBACpAK-located tet(A) is flanked by ISKpn25 from the transferred conjugative plasmid, as well as the ISKpn14-mediated integration of an entire 119-kb, blaNDM-1-containing conjugative plasmid from Klebsiella pneumoniae. IMPORTANCE By analyzing transposition activity within our MGE-free recipient, we can gain insights into the interaction and evolution of multidrug resistance-conferring MGEs following conjugation, including the movement of multiple ISs, the formation of composite transposons, and cointegration and/or recombination between different replicons in the same cell. This combination of recipient and entrapment vector will allow fine-scale experimental studies of factors affecting intracellular transposition and MGE formation in and from ARG-encoding MGEs from multiple species of clinically relevant Enterobacteriaceae.


Assuntos
Conjugação Genética , Elementos de DNA Transponíveis , Farmacorresistência Bacteriana Múltipla , Infecções por Enterobacteriaceae/microbiologia , Enterobacteriaceae/genética , Plasmídeos/genética , Antibacterianos/farmacologia , Enterobacteriaceae/efeitos dos fármacos , Enterobacteriaceae/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Transferência Genética Horizontal , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Plasmídeos/metabolismo
6.
BMC Oral Health ; 21(1): 632, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34886820

RESUMO

OBJECTIVE: Many sections of the health care system are facing a major challenge making infectious disease problematic to treat; antimicrobial resistance (AMR). Identification and surveillance of the resistome have been highlighted as one of the strategies to overcome the problem. This study aimed to screen for AMR genes in an oral microbiota, a complex microbial system continuously exposed to antimicrobial agents commonly used in dental practice. MATERIALS AND METHODS: As a significant part of the oral microbiome cannot be conventionally cultured, a functional metagenomic approach was chosen. The human oral metagenomic DNA was extracted from saliva samples collected from 50 healthy volunteers in Norway. The oral metagenomic library was then constructed by ligating partially digested oral metagenome into pSMART BAC vector and introducing into Escherichia coli. The library was screened against antimicrobials in dental practices. All resistant clones were selected and analyzed. RESULTS: Screening of the oral metagenomic library against different antimicrobials detected multiple clones with resistance against chlorhexidine, triclosan, erythromycin, tetracycline, and sodium hypochlorite. Bioinformatic analysis revealed both already known resistance genes, including msr, mef(A), tetAB(46), and fabK, and genes that were not previously described to confer resistance, including recA and accB conferring resistance to sodium hypochlorite and chlorhexidine, respectively. CONCLUSION: Multiple clones conferring resistance to antimicrobials commonly used in dental practices were detected, containing known and novel resistant genes by functional-based metagenomics. There is a need for more studies to increase our knowledge in the field.


Assuntos
Clorexidina , Hipoclorito de Sódio , Clorexidina/farmacologia , DNA , Resistência Microbiana a Medicamentos/genética , Humanos , Metagenoma , Metagenômica , Saliva , Hipoclorito de Sódio/farmacologia
7.
Methods Mol Biol ; 2327: 31-50, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34410638

RESUMO

A large proportion of bacteria, from a multitude of environments, are not yet able to be grown in the laboratory, and therefore microbiological and molecular biological investigations of these bacteria are challenging. A way to circumvent this challenge is to analyze the metagenome, the entire collection of DNA molecules that can be isolated from a particular environment or sample. This collection of DNA molecules can be sequenced and assembled to determine what is present and infer functional potential, or used as a PCR template to detect known target DNA and potentially unknown regions of DNA nearby those targets; however assigning functions to new or conserved hypothetical, functionally cryptic, genes is difficult. Functional metagenomics allows researchers to determine which genes are responsible for selectable phenotypes, such as resistance to antimicrobials and metabolic capabilities, without the prerequisite needs to grow the bacteria containing those genes or to already know which genes are of interest. It is estimated that a third of the resident species of the human oral cavity is not yet cultivable and, together with the ease of sample acquisition, makes this metagenome particularly suited to functional metagenomic studies. Here we describe the methodology related to the collection of saliva samples, extraction of metagenomic DNA, construction of metagenomic libraries, as well as the description of functional assays that have previously led to the identification of new genes conferring antimicrobial resistance.


Assuntos
Metagenômica , Microbiota , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Humanos , Metagenoma
8.
J Antimicrob Chemother ; 76(1): 101-109, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33009809

RESUMO

OBJECTIVES: Antimicrobial resistance (AMR) in clinically relevant bacteria is a growing threat to public health globally. In these bacteria, antimicrobial resistance genes are often associated with mobile genetic elements (MGEs), which promote their mobility, enabling them to rapidly spread throughout a bacterial community. METHODS: The tool MobileElementFinder was developed to enable rapid detection of MGEs and their genetic context in assembled sequence data. MGEs are detected based on sequence similarity to a database of 4452 known elements augmented with annotation of resistance genes, virulence factors and detection of plasmids. RESULTS: MobileElementFinder was applied to analyse the mobilome of 1725 sequenced Salmonella enterica isolates of animal origin from Denmark, Germany and the USA. We found that the MGEs were seemingly conserved according to multilocus ST and not restricted to either the host or the country of origin. Moreover, we identified putative translocatable units for specific aminoglycoside, sulphonamide and tetracycline genes. Several putative composite transposons were predicted that could mobilize, among others, AMR, metal resistance and phosphodiesterase genes associated with macrophage survivability. This is, to our knowledge, the first time the phosphodiesterase-like pdeL has been found to be potentially mobilized into S. enterica. CONCLUSIONS: MobileElementFinder is a powerful tool to study the epidemiology of MGEs in a large number of genome sequences and to determine the potential for genomic plasticity of bacteria. This web service provides a convenient method of detecting MGEs in assembled sequence data. MobileElementFinder can be accessed at https://cge.cbs.dtu.dk/services/MobileElementFinder/.


Assuntos
Salmonella enterica , Animais , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos , Alemanha , Sequências Repetitivas Dispersas , Plasmídeos/genética , Salmonella enterica/genética
9.
Mob DNA ; 10: 40, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31624505

RESUMO

Transposable elements in prokaryotes are found in many forms and therefore a robust nomenclature system is needed in order to allow researchers to describe and search for them in publications and databases. Here we provide an update on The Transposon Registry which allocates numbers to any prokaryotic transposable element. Additionally, we present the completion of registry records for all transposons assigned Tn numbers from Tn1 onwards where sequence data or publications exist.

10.
Sci Rep ; 9(1): 8388, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31182805

RESUMO

Integrons are genetic elements consisting of a functional platform for recombination and expression of gene cassettes (GCs). GCs usually carry promoter-less open reading frames (ORFs), encoding proteins with various functions including antibiotic resistance. The transcription of GCs relies mainly on a cassette promoter (PC), located upstream of an array of GCs. Some integron GCs, called ORF-less GCs, contain no identifiable ORF with a small number shown to be involved in antisense mRNA mediated gene regulation. In this study, the promoter activity of ORF-less GCs, previously recovered from the oral metagenome, was verified by cloning them upstream of a gusA reporter, proving they can function as a promoter, presumably allowing bacteria to adapt to multiple stresses within the complex physico-chemical environment of the human oral cavity. A bi-directional promoter detection system was also developed allowing direct identification of clones with promoter-containing GCs on agar plates. Novel promoter-containing GCs were identified from the human oral metagenomic DNA using this construct, called pBiDiPD. This is the first demonstration and detection of promoter activity of ORF-less GCs from Treponema bacteria and the development of an agar plate-based detection system will enable similar studies in other environments.


Assuntos
Genes , Metagenoma , Boca/microbiologia , Fases de Leitura Aberta/genética , Regiões Promotoras Genéticas , Ensaios Enzimáticos , Glucuronidase/metabolismo , Humanos , Integrons/genética , Plasmídeos/genética
11.
Microb Drug Resist ; 24(2): 105-112, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28604259

RESUMO

Antimicrobial resistance is common in the microbial inhabitants of the human oral cavity. Antimicrobials are commonly encountered by oral microbes as they are present in our diet, both naturally and anthropogenically, and also used in oral healthcare products and amalgam fillings. We aimed to determine the presence of genes in the oral microbiome conferring reduced susceptibility to common antimicrobials. From an Escherichia coli library, 12,277 clones were screened and ten clones with reduced susceptibility to triclosan were identified. The genes responsible for this phenotype were identified as fabI, originating from a variety of different bacteria. The gene fabI encodes an enoyl-acyl carrier protein reductase (ENR), which is essential for fatty acid synthesis in bacteria. Triclosan binds to ENR, preventing fatty acid synthesis. By introducing the inserts containing fabI, ENR is likely overexpressed in E. coli, reducing the inhibitory effect of triclosan. Another clone was found to have reduced susceptibility to cetyltrimethylammonium bromide and cetylpyridinium chloride. This phenotype was conferred by a UDP-glucose 4-epimerase gene, galE, homologous to one from Veillonella parvula. The product of galE is involved in lipopolysaccharide production. Analysis of the E. coli host cell surface showed that the charge was more positive in the presence of galE, which likely reduces the binding of these positively charged antiseptics to the bacteria. This is the first time galE has been shown to confer resistance against quaternary ammonium compounds and represents a novel, epimerase-based, global cell adaptation, which confers resistance to cationic antimicrobials.


Assuntos
Anti-Infecciosos Locais/farmacologia , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/genética , Proteínas de Escherichia coli/genética , Escherichia coli/efeitos dos fármacos , Regulação Bacteriana da Expressão Gênica , Genes Essenciais , UDPglucose 4-Epimerase/genética , Sequência de Aminoácidos , Cetrimônio , Compostos de Cetrimônio/farmacologia , Cetilpiridínio/farmacologia , Células Clonais , Farmacorresistência Bacteriana/genética , Enoil-(Proteína de Transporte de Acila) Redutase (NADH)/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Graxo Sintase Tipo II/genética , Ácido Graxo Sintase Tipo II/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/genética , Humanos , Testes de Sensibilidade Microbiana , Boca/microbiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Eletricidade Estática , Triclosan/farmacologia , UDPglucose 4-Epimerase/metabolismo , Veillonella/efeitos dos fármacos , Veillonella/enzimologia , Veillonella/genética
12.
FEMS Microbiol Lett ; 363(18)2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27521260

RESUMO

A composite transposon is a mobile genetic element consisting of two insertion sequences (ISs) flanking a segment of cargo DNA often containing antibiotic resistance (AR) genes. Composite transposons can move as a discreet unit. There have been recently several reports on a novel mechanism of movement of an IS26-based composite transposon through the formation of a translocatable unit (TU), carrying the internal DNA segment of a composite transposon and one copy of a flanking IS. In this study, we determined the presence of composite transposons and TUs in human oral metagenomic DNA using PCR primers from common IS elements. Analysis of resulting amplicons showed four different IS1216 composite transposons and one IS257 composite transposon in our metagenomic sample. As our PCR strategy would also detect TUs, PCR was carried out to detect circular TUs predicted to originate from these composite transposons. We confirmed the presence of two novel TUs, one containing an experimentally proven antiseptic resistance gene and another containing a putative universal stress response protein (UspA) encoding gene. This is the first report of a PCR strategy to amplify the DNA segment on composite transposons and TUs in metagenomic DNA. This can be used to identify AR genes associated with a variety of mobile genetic elements from metagenomes.


Assuntos
Elementos de DNA Transponíveis , Metagenoma , Boca/microbiologia , DNA Bacteriano/genética , Resistência Microbiana a Medicamentos/genética , Feminino , Voluntários Saudáveis , Humanos , Masculino , Metagenômica/métodos , Reação em Cadeia da Polimerase/métodos , Saliva/citologia , Análise de Sequência de DNA
13.
PLoS One ; 11(6): e0157605, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27304457

RESUMO

Integrons are genetic elements capable of capturing and expressing open reading frames (ORFs) embedded within gene cassettes. They are involved in the dissemination of antibiotic resistance genes (ARGs) in clinically important pathogens. Although the ARGs are common in the oral cavity the association of integrons and antibiotic resistance has not been reported there. In this work, a PCR-based approach was used to investigate the presence of integrons and associated gene cassettes in human oral metagenomic DNA obtained from both the UK and Bangladesh. We identified a diverse array of gene cassettes containing ORFs predicted to confer antimicrobial resistance and other adaptive traits. The predicted proteins include a putative streptogramin A O-acetyltransferase, a bleomycin binding protein, cof-like hydrolase, competence and motility related proteins. This is the first study detecting integron gene cassettes directly from oral metagenomic DNA samples. The predicted proteins are likely to carry out a multitude of functions; however, the function of the majority is yet unknown.


Assuntos
Integrons/genética , Metagenoma/genética , Microbiota/genética , Saliva/microbiologia , Adulto , Idoso , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Bangladesh , DNA Bacteriano/química , DNA Bacteriano/genética , Resistência Microbiana a Medicamentos/efeitos dos fármacos , Resistência Microbiana a Medicamentos/genética , Feminino , Genes Bacterianos/genética , Humanos , Masculino , Pessoa de Meia-Idade , Fases de Leitura Aberta/genética , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Reino Unido , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...